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1 Introduction

The symmetry group G of an equation on a vector space V is the group of trans-
formations of V that are invariant to the solution set of the given equation. The
aim of this paper is to investigate in general the properties of the composition
g1, . . . , gn ∈ G of n elements in the symmetry group G acting on V .

Compositions of symmetry group elements can be described as induced by
the symmetry algebra g of G. This way the composition of symmetry action
corresponds to the generalized commutator [X1, . . . , Xn] of degree n of Lie al-
gebra g elements X1, . . . , Xn, which is an operation on the n-th tensor power
of g. In order to characterize generalized commutators of symmetries of a given
equation, we derive the Generalized infinitesimal symmetry criterion as a conse-
quence of the Infinitesimal symmetry criterion for characterizing the symmetry
algebra of an equation, giving necessary and sufficient condition for a generalized
commutator acting as a symmetry of the equation. This way we derive the gen-
eral system of partial differential equations that characterizes the composition
of symmetry action.

Particular solutions to the problem are provided as examples using the Gen-
eralized Infinitesimal symmetry criterion in low dimensions for algebraic equa-
tions and ordinary differential equations.
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2 Generalized symmetry criterion for algebraic
equations

Here the simplified notation au means first order partial derivative of a with
respect to u.

TODO one-parametric subgroup
TODO def invariant function
TODO def infinitesimal generator, symmetry algebra

Statement 2.1 Let G be a connected group of transformations acting on the
manifold M . A smooth real-valued function f : M → R is an invariant function
for G if and only if

v(f) = 0,

for all x ∈ M and every infinitesimal generator v of G.

Statement 2.2 (Infinitesimal invariance criterion for algebraic equations)
Suppose

F k(x) = 0

for k = 1, . . . , d is a system of algebraic equations of maximal rank defined
over M . If G is a connected local Lie group of transformations acting on M
then G is a symmetry group of the system if and only if

vF k(x) = 0,

where k = 1, . . . , d whenever

F (x) = 0,

for every infinitesimal generator v of G,

Theorem 2.1 (Generalized infinitesimal invariance criterion for algebraic equations)
Let G be a connected Lie group of transformations acting on the n-dimensional
manifold M . Let F : M → Rd, d ≤ n define a system of algebraic equations

F k(x) = 0

for k = 1, . . . , d and assume the system is of maximal rank, meaning the

Jacobian matrix (∂F
k

∂xi
) is of rank d at every solution x of the system. Then G

is a q-symmetry group of the system if and only if

vF k(x) = 0,

where k = 1, . . . , d and v = Alt(v1, . . . , vq) whenever

F (x) = 0,

for every q − tuple of infinitesimal generators v1, . . . , vq of G, then G is a
q-symmetry group of the system.
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As a special case for q = 2, we have generators v1, v2. The total vector field
is the commutator v = v1v2 − v2v1. For q > 2 the total tensor Alt(v1, . . . , vq)
is not a vector field in general. We shall focus on the case q > 2 in the next
section.

3 General equation for composition of symme-
tries

Theorem 3.1 (Characterization of q-symmetry group) Let T linear op-
erator on vector space V and let C the symmetry group of T . Then the q-
symmetry group Cq is isomorphic to a power k of the symmetry group

Cq
∼= Ck,

for some 0 ≤ k ≤ q. Moreover for matrix operators the maximal value k = q
is attained if and only if T is regular. In this case Hq

Sym
∼= Z for every q ≥ 0.

Statement 3.1 Let v1, . . . , vq vector fields. Then we have the recursive formula
for generalized commutator

[v1, . . . , vq] =

q∑
k=0

(−1)1+k[v1, . . . , vk−1, vk+1, . . . , vq]vk (1)

For example for q = 3 we have

[A,B,C] = [A,B]C − [A,C]B + [B,C]A. (2)

From the recursive formula we can see that [v1, . . . , vq] is a differential opera-
tor with components ∂k

xi
for i = 1, . . . , n and k = 1, . . . , (q−1). For example for

q = 3 and variables x, y, the generalized commutator [v1, v2, v3] has components
∂x, ∂y, ∂

2
x, ∂

2
y .

In general the equation for 2-symmetry is a system of first order partial
differential equations given for k = 1, . . . , n as

n∑
i=1

ak(bik)− bk(aik) = αk. (3)

Moving on to 3-symmetry, we set the tensor

Uk
ab = ak(bxk + byk)− bk(axk + ayk) (4)

and define the tensors of degree 3 as

Uk,0
abc = Uk

abc
k − Uk

acb
k + Uk

bca
k, (5)

and
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Uk,1
abc =

n∑
l=0

Uk
abc

k
l − Uk

acb
k
l + Uk

bca
k
l , (6)

which gives the equations for 3-symmetry
In the general case we set inductively the tensors

Uk,l
a1...an+1 =

n+1∑
i=1

l∑
|α|=0

(−1)1+iUk
a1...ai−1ai+1...an+1aiα, (7)

that gives the system of partial differential equations of (q− 1)-the order for
q-symmetry defined for k = 1, . . . n and l = 0, . . . (q − 1)

Uk,l
a1...an =

n∑
i=1

l∑
|α|=0

(−1)1+iUk
a1...ai−1ai+1...anaiα. (8)

DRAFT
The general 2-symmetry equation for algebraic equations:

axbxx + aybxy − bxaxx − byaxy = a(x, y),

axbyx + aybyy − bxayx − byayy = b(x, y).
(9)

First we will investigate the sphere. The equation is given by F (x, y) =
x2 + y2 − 1. For the vector field

v = a∂x + b∂y, (10)

we compute by the infinitesimal symmetry criterion

vF (x, y) = 2xa+ 2yb = 0. (11)

The solution is the generator a = y, b = −x. Integrating this vector field
gives the symmetry group SO(2). Next for 2-symmetry, we set the vector fields

v1 = ax∂x + ay∂y

v2 = bx∂x + by∂y
(12)

and solve for ax, ay, bx, by the equation v = [v1, v2]. This gives the system of
partial differential equations

ax(bxx + byx)− bx(axx + ayx) = y,

ay(bxy + byy)− by(axy + ayy) = −x.
(13)
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We can set

ax(x, y) = c1 + c2x+ c3y + c4xy,

ay(x, y) = c5 + c6x+ c7y + c8xy,

bx(x, y) = c9 + c10x+ c11y + c12xy,

by(x, y) = c13 + c14x+ c15y + c16xy.

(14)

so we have

bxx + byx = c10 + c13 + (c14 + c16)y (15)

and

ax(bxx + byx) = c1(c10 + c13) + (c1(c14 + c16) + c3(c10 + c13))y

+c2(c10 + c13)x+ (c2(c14 + c16) + c4(c10 + c13))xy

+c3(c14 + c16)y
2 + c4(c14 + c16)xy

2.

(16)

This gives the first part of the system of equations

c1(c10 + c13) + (c1(c14 + c16)− c5(c2 + c5) + (c5(c6 + c8) = 0,

c2(c10 + c13)− c10(c2 + c5) = 0,

c1(c14 + c16) + c3(c10 + c13)− c9(c6 + c8) + c11(c2 + c5) = 1,

c2(c14 + c16) + c4(c10 + c13)− c10(c6 + c8) + c12(c2 + c5),= 0

c3(c14 + c16)− c11(c6 + c8) = 0,

c4(c14 + c16)− c12(c6 + c8) = 0.

(17)

The second part of the system is

c5(c14 + c1) + (c5(c2 + c4)− c9(c6 + c11) + (c9(c10 + c12) = 0,

c4(c14 + c1)− c14(c6 + c9) = 0,

c4(c2 + c4) + c7(c14 + c1)− c13(c10 + c12) + c15(c5 + c9) = −1,

c6(c2 + c4) + c8(c14 + c1)− c14(c10 + c12) + c16(c6 + c11),= 0

c7(c2 + c4)− c15(c10 + c12) = 0,

c8(c2 + c4)− c16(c10 + c12) = 0.

(18)

Since there are remaining 4 degrees of freedom, we see that the 2-symmetry
group is isomorphic to the fourth power of the symmetry group C2

∼= C4.
For the hyperbola F (x, y) = x2− y2+1 the generator is a = y, b = x, giving

the group of hyperbolic rotations. The equation for 2-symmetry is in this case
complementary to the sphere

ax(bxx + byx)− bx(axx + ayx) = y,

bx(bxy + byy)− by(axy + ayy) = x.
(19)

5



The system of equations is similar to (17) and (18) with 1 in the place of
the only −1. Again we conclude that C2

∼= C4.
Our last example is the parabola given as F (x, y) = αx2 − y. We set the

vector field v as above and compute

vF = 2αxa− b = 0

so the solution generator is a = 1, b = 2αx. Integrating this field gives the group
of quadratic transformations. For the 2-symmetry equation we have

ax(bxx + byx)− bx(axx + ayx) = 1,

ay(bxy + byy)− by(axy + ayy) = 2αx.
(20)

We can set

ax(x, y) = c1 + c2x+ c4xy,

ay(x, y) = c5 + c6x+ c8xy,

bx(x, y) = c9 + c10x+ c12xy,

by(x, y) = c13 + c14x+ c16xy.

(21)

This yields the system given by

c1(c10 + c13) + (c1(c14 + c16)− c5(c2 + c5) + (c5(c6 + c8) = 1,

c2(c10 + c13)− c10(c2 + c5) = 0,

c1(c14 + c16)− c9(c6 + c8)+ = 0,

c2(c14 + c16) + c4(c10 + c13)− c10(c6 + c8) + c12(c2 + c5),= 0

c4(c14 + c16)− c12(c6 + c8) = 0,

(22)

and

c5(c14 + c1) + (c5(c2 + c4)− c9(c6) + (c9(c10 + c12) = 0,

c4(c14 + c1)− c14(c6 + c9) = 2α,

c4(c2 + c4)− c13(c10 + c12) = 0,

c6(c2 + c4) + c8(c14 + c1)− c14(c10 + c12) + c16c6,= 0

c8(c2 + c4)− c16(c10 + c12) = 0.

(23)

We can conclude that the 2-symmetry group is isomorphic to the second
power of the symmetry group C2

∼= C2.
TODO HIGHER SYMMETRY TRICK example q = 3, by setting cx, cy

to higher order partial derivative components ∂l
x for l > 0 in TODO REF

EQ, inductively returning to the q = 2 case. The coefficients for functions
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ax, bx, ay, by are given by the equations with partial derivatives of order 1 for
l = 0 in TODO REF EQ with correction terms cxx, c

y
y.

TODO Magical power k Conjecture
For well-behaved linear operators all higher symmetry groups for q ≥ 2

are expected to be the same power constant k power of the symmetry group
Cq

∼= Ck.

0 → C → Ck → Ck → . . . (24)

DRAFT Suppose there exists k such that for every q geq2, we have Cq
∼= Ck.

Then Hq
Sym

∼= Ck for q ≥ 2 and H0
Sym.

4 Generalized symmetry criterion for ODE

TODO def total derivative
TODO def jet space, M (n), prolongation of vector field pr(n)

Statement 4.1 Let M be an open subset of X×U and suppose F (x, u(n)) = 0 is
an n-th order system of differential equations defined over M , with corresponding
subvariety S ⊂ M (n). Suppose G is a local group of transformations acting on
M whose prolongation leaves S invariant, meaning whenever (x, u(n)) ∈ S we
have pr(n)g · (x, u(n)) ∈ S for all g ∈ G such that this is defined. Then G is a
symmetry group of the system of differential equations.

Statement 4.2 Let M be an open subset of X×U and suppose F (x, u, . . . , u(n)) =
0 is an n-th order system of differential equations defined over M with corre-
sponding subvariety S ⊂ M (n). Suppose G is a local group of transformations
acting on M whose prolongation leaves S invariant, meaning that whenever
(x, u, . . . , u(n) ∈ S, we have pr(n)g · (x, u, . . . , u(n)) ∈ S for all g ∈ G such
that this is defined. Then G is a symmetry group of the system of differential
equations.

Now using 4.2 we can formulate the infinitesimal symmetry criterion for
ordinary differential equations.

Statement 4.3 (Infinitesimal invariance criterion for ODE) Suppose

F k(x, u, . . . , u(n)) = 0

for k = 1, . . . , d is a system of differential equations of maximal rank defined
over M ⊂ X × U . If G is a local group of transformations acting on M and

pr(n)vF k(x, u, . . . , u(n)) = 0,

where k = 1, . . . , d whenever

F (x, u, . . . , u(n)) = 0,

for every infinitesimal generator v of G, then G is a symmetry group of the
system.
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Theorem 4.1 (Generalized infinitesimal invariance criterion for ODE)
Suppose

F k(x, u, . . . , u(n)) = 0

for k = 1, . . . , d is a system of differential equations of maximal rank defined
over M ⊂ X × U . If G is a local group of transformations acting on M and

pr(n)vF k(x, u, . . . , u(n)) = 0,

where k = 1, . . . , d and v = Alt(v1, . . . , vq) whenever

F (x, u, . . . , u(n)) = 0,

for every q − tuple of infinitesimal generators v1, . . . , vq of G, then G is a
q-symmetry group of the system.

Statement 4.4 Let F be a system of differential equations of maximal rank
defined over M ⊂ X ×U . The set of all infinitesimal symmetries of this system
forms a Lie algebra of vector fields on M . Moreover, if this is finite-dimensional,
the (connected component of the) symmetry group of the system is a local Lie
group of transformations acting on M .

Definition 4.1 (Characteristic of vector field) The characteristic of the vec-
tor field v is a q-tuple of functions Q(x, u, u′), depending on x, u and first order
derivatives of u, is defined by

Qα(x, u, ux) = bα(x, u)−
p∑

i=0

ai(x, u)
∂uα

∂xi
ux,

for α = 1, . . . , q.

Statement 4.5 Let v =
∑p

i=1 a
i(x, u)∂xi

+
∑t

j=1 b
j(x, u)∂uj and let Q be its

characteristic. The n-th prolongation of v is given as

pr(n)v =

p∑
i=1

ai(x, u)∂xi
+

t∑
j=1

n∑
|α|=0

bjα(x, u
(α))∂j

uα
uα, (25)

with coefficients

bjα = DαQ
j +

p∑
i=0

aiuj
α,i. (26)

Our first example is the equation u′ = 0, that is ux = 0. We compute
the first prolongation using the characteristic of vector field v = a∂x + b∂u and
using the infinitesimal symmetry criterion we obtain the equation bx = 0. So the
symmetry algebra is given by a(x, u)∂x + b(u)∂u. We move on to the equation
of 2-symmetry given as
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ax(bxx + bux)− bx(axx + aux) = a(x, u),

au(bxu + buu)− bu(axu + auu) = b(u).
(27)

The solution are functions ax(x, u), au(u), bx(x, u), bu(u) so we the 2-symmetry
group of u′ = 0 is isomorphic to the second power of the symmetry group
C2

∼= C2.
Our second example is the second order equation u′′ = 0. This yields by the

infinitesimal symmetry criterion the system of equations

bxx = 0,

2bxu = axx,

buu = 2axu,

auu = 0.

(28)

The Lie algebra of infinitesimal symmetries is isomorphic to sl(3) with gen-
erators

v1 = ∂x,

v2 = ∂u,

v3 = x∂x,

v4 = u∂u,

v5 = u∂x,

v6 = x∂u,

v7 = x2∂x + xu∂u,

v8 = xu∂x + u2∂u.

(29)

Now the equation of 2-symmetry for each generator k = 1, . . . , 8 as vk =
vxk∂x + vuk∂u is as follows

ax(bxx + bux)− bx(axx + aux) = vxk ,

au(bxu + buu)− bu(axu + auu) = vyk .
(30)

So in conclusion C2
∼= C3.

Investigating the n-th order equation u(n) = 0 we get from the infinitesimal
symmetry criterion the system of equations

bxn = 0,(
n

k

)
bxk−1un+1−k = axkun−k ,

aun = 0.

(31)
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for k = 1, . . . (n− 1). we can set

a(x, u) = a0(x) + a1(x)u+ . . . an−1(x)u
n−1,

b(x, u) = b0(x) + b1(x)x+ . . . bn−1(x)x
n−1.

(32)

so we have 2n − 2 degrees of freedom and n − 4 equations. This gives a
symmetry algebra of dimension

5 Generalized symmetry criterion for PDE

First we restate the infinitesimal symmetry criterion for partial differential equa-
tions.

Theorem 5.1 (Generalized infinitesimal invariance criterion for PDE)
Suppose

F k(x1, . . . , xd, u, . . . , u
(n)) = 0

for k = 1, . . . , d is a locally solvable system of partial differential equations of
maximal rank defined over M ⊂ X×U . If G is a local group of transformations
acting on M and

pr(n)vF k(x1, . . . , xd, u, . . . , u
(n)) = 0,

where k = 1, . . . , d and v = Alt(v1, . . . , vq) whenever

F (x1, . . . , xd, u, . . . , u
(n)) = 0,

for every q − tuple of infinitesimal generators v1, . . . , vq of G, then G is a
q-symmetry group of the system.
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