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1 Introduction

The symmetry group G of an equation on a vector space V' is the group of trans-
formations of V' that are invariant to the solution set of the given equation. The
aim of this paper is to investigate in general the properties of the composition
g1, ---,9n € G of n elements in the symmetry group G acting on V.

Compositions of symmetry group elements can be described as induced by
the symmetry algebra g of G. This way the composition of symmetry action
corresponds to the generalized commutator [X1,..., X,] of degree n of Lie al-
gebra g elements X1,...,X,,, which is an operation on the n-th tensor power
of g. In order to characterize generalized commutators of symmetries of a given
equation, we derive the Generalized infinitesimal symmetry criterion as a conse-
quence of the Infinitesimal symmetry criterion for characterizing the symmetry
algebra of an equation, giving necessary and sufficient condition for a generalized
commutator acting as a symmetry of the equation. This way we derive the gen-
eral system of partial differential equations that characterizes the composition
of symmetry action.

Particular solutions to the problem are provided as examples using the Gen-
eralized Infinitesimal symmetry criterion in low dimensions for algebraic equa-
tions and ordinary differential equations.



2 Generalized symmetry criterion for algebraic
equations

Here the simplified notation a, means first order partial derivative of a with
respect to u.

TODO one-parametric subgroup

TODO def invariant function

TODO def infinitesimal generator, symmetry algebra

Statement 2.1 Let G be a connected group of transformations acting on the
manifold M. A smooth real-valued function f : M — R is an invariant function
for G if and only if

v(f) =0,

for all x € M and every infinitesimal generator v of G.

Statement 2.2 (Infinitesimal invariance criterion for algebraic equations)
Suppose
FF(x) =0
for k=1,...,d is a system of algebraic equations of maximal rank defined
over M. If G is a connected local Lie group of transformations acting on M
then G is a symmetry group of the system if and only if

vFk(x) =0,

where k =1, ...,d whenever

F(x)=0,
for every infinitesimal generator v of G,

Theorem 2.1 (Generalized infinitesimal invariance criterion for algebraic equations)
Let G be a connected Lie group of transformations acting on the n-dimensional
manifold M. Let F : M — R, d < n define a system of algebraic equations

FF(z)=0

for k = 1,...,d and assume the system is of mazximal rank, meaning the

Jacobian matriz (%};k) is of rank d at every solution x of the system. Then G

18 a g-symmetry group of the system if and only if

vF*(z) =0,
where k =1,...,d and v = Alt(v1,...,vq4) whenever
F(z) =0,
for every q — tuple of infinitesimal generators vy,...,vq of G, then G is a

q-symmetry group of the system.



As a special case for ¢ = 2, we have generators v, vs. The total vector field
is the commutator v = v1vy — vev;. For ¢ > 2 the total tensor Alt(vy,...,v,)
is not a vector field in general. We shall focus on the case ¢ > 2 in the next
section.

3 General equation for composition of symme-
tries

Theorem 3.1 (Characterization of ¢-symmetry group) Let T linear op-
erator on vector space V. and let C the symmetry group of T. Then the g-
symmetry group Cy is isomorphic to a power k of the symmetry group

c, = Ck,

for some 0 < k < q. Moreover for matriz operators the maximal value k = q
is attained if and only if T is reqular. In this case Hgym = 7 for every q > 0.

Statement 3.1 Letvy,...,vq vector fields. Then we have the recursive formula
for generalized commutator

q
01,5 0g] =Y (=) F o1, 0k—1, Vkg, - O]k (1)
k=0

For example for ¢ = 3 we have

[A,B,C] =[A,B|C — [A,C]|B + [B,C|A. (2)
From the recursive formula we can see that [v1,. .., v4] is a differential opera-
tor with components 8’9; fori=1,...,nand k=1,...,(¢—1). For example for
q = 3 and variables z, y, the generalized commutator [v1, ve, v3] has components
Oz, Oy, 8%,83.
In general the equation for 2-symmetry is a system of first order partial
differential equations given for k =1,...,n as

n

> ab(bh) —b*(a}) = ot (3)

i=1
Moving on to 3-symmetry, we set the tensor
Ugy = a* (b + bf) — 0" (a; + af) (4)

and define the tensors of degree 3 as

URY = Uk, — Uk + UL dF, (5)

abe

and



Usie = D Usyel = Usibl + Uk, (6)
1=0

which gives the equations for 3-symmetry
In the general case we set inductively the tensors

n+l 1

Ufl,l...a”Jrl = Z Z (_1)1+iU51.,.aifla“rl...an*laiﬂ (7)

i=1 |a|=0

that gives the system of partial differential equations of (¢ — 1)-the order for
g-symmetry defined for k=1,...nand [ =0,...(¢ — 1)

n l
U(fila" = Z Z (_1>1+iUfl...ai*1ai+1...a'"ag‘ (8)

i=1 |a|=0
DRAFT
The general 2-symmetry equation for algebraic equations:

i

z,y).

First we will investigate the sphere. The equation is given by F(x,y) =
x2 + y? — 1. For the vector field

a®by + a’by — b"ay — bYay = a(x,y)

z a
a®by + a?by — b al — b¥a¥ = b(

(9)

x

v = ad, + boy, (10)

we compute by the infinitesimal symmetry criterion

vF(z,y) = 2za + 2yb = 0. (11)

The solution is the generator a = y,b = —x. Integrating this vector field
gives the symmetry group SO(2). Next for 2-symmetry, we set the vector fields

v = axax + ayay

(12)
vy = b7, + bY0,

and solve for a®,a¥,b”,bY the equation v = [vq, v]. This gives the system of
partial differential equations

a® (b +by) — b%(ag + a3) =y,
a’(by +bY) — b¥(ay +ay) = —x.



We can set

a®(z,y) = c1 + c2x + c3y + cazy,
a’(x,y) = c5 + cex + cry + caxy,

14
b*(z,y) = co + c10T + c11y + c127Y, (4
bY(z,y) = ci3 + c142 + c15y + ci62Y.
so we have
bY +b¥ = c19 + c13 + (c14 + c16)y (15)

and

a®(by + bY%) = c1(c10 + c13) + (c1(c1a + c16) + c3(cro + €13))y
+ea(c1p + c13)x + (c2(c1a + c16) + calcro + c13))zy (16)
+es(cra + 016)y2 + ca(cra + 016)$y2-

This gives the first part of the system of equations

c1(cio + c13) + (c1(e1a + ci6) — es(c2 + ¢5) + (es(cs + cs) = 0,
c2(c10 4 c13) — cro(c2 +¢5) = 0,

c1(cia + c16) + cez(cro + c13) — co(ce + cs) +cri(ca +¢5) =1, (17)
ca(c1a + c16) + ca(c1o + c13) — cro(ce + cg) + c12(c2 +¢5),= 0
c3(c1q + c16) — c11(ce + ¢g) =0,
ca(c1a + c16) — cr2(ce +cg) = 0.

The second part of the system is

cs(cia +c1) + (es(ca + ca) — co(ce + c11) + (co(c10 + c12) = 0,
ca(cia +c1) — cra(ce +cg) = 0,

ca(co + ca) + cr(cra + 1) — ciz(cio + c12) + cis(cs + o) = —1, (18)

ce(ca + ca) + cg(cra +c1) — cralcio + c12) + cr(cs +c11),= 0
cr(ca + ca) — er5(c10 + c12) = 0,
cs(ca + ¢q) — c16(c10 + ¢12) = 0.
Since there are remaining 4 degrees of freedom, we see that the 2-symmetry
group is isomorphic to the fourth power of the symmetry group Cp = C*.
For the hyperbola F(z,y) = 2% — y? + 1 the generator is a = y,b = x, giving

the group of hyperbolic rotations. The equation for 2-symmetry is in this case
complementary to the sphere

a®(bi +b3) — b"(ay +a3) = v,

B (b2 4+ bY) — b (a? + al) = . (19)



The system of equations is similar to (17) and (18) with 1 in the place of
the only —1. Again we conclude that Cy = C*.

Our last example is the parabola given as F(x,y) = az? —y. We set the
vector field v as above and compute

vF =2axa—b=0

so the solution generator is a = 1,b = 2ax. Integrating this field gives the group
of quadratic transformations. For the 2-symmetry equation we have

a®(bi + b3) — b"(az +af) =1,

20
a’(by +bY) — b¥(a, +ay) = 2ax. (20)
We can set
a®(z,y) = c1 + 2z + cazy,
a¥(x,y) = c5 + cex + cgry,
(z,9) 5 6 8TY (21)

b"(z,y) = co + cr0x + crazy,

bY(x,y) = c13 + crax + c162y.

This yields the system given by

c1(cio + c13) + (c1(c1a + c16) — cs(c2 +¢5) + (es(c6 +cg) =1,

c2(c10 + c13) — c1o(c2 +¢5) = 0,

ci(c1a + c16) — colce + cg)+ =0, (22)
ca(c1a + c16) + ca(c1o + c13) — cro(ce + cg) + c12(c2 +¢5),= 0

ca(c1a + c16) — c12(cs + ¢cs) = 0,

and

cs(c1a +c1) + (es(e2 + ca) — colcs) + (co(cro0 + c12) = 0,
ca(cia + c1) — cra(ce + co) = 20,

cq(ea + cq) — c13(c1p + c12) =0, (23)
ce(ca + cq) + cs(cia + c1) — cra(cro + c12) + ci6c6,= 0
cs(cz + ca) — ci6(cio + c12) = 0.

We can conclude that the 2-symmetry group is isomorphic to the second
power of the symmetry group Cy = C2.

TODO HIGHER SYMMETRY TRICK example ¢ = 3, by setting ¢*, c¥
to higher order partial derivative components . for I > 0 in TODO REF
EQ, inductively returning to the ¢ = 2 case. The coeflicients for functions



a®, b, a¥,bY are given by the equations with partial derivatives of order 1 for
[ =01in TODO REF EQ with correction terms cg, c¥.
TODO Magical power k Conjecture
For well-behaved linear operators all higher symmetry groups for ¢ > 2
are expected to be the same power constant & power of the symmetry group

C, = Ck.

0-C—=CFoCh— .. (24)

DRAFT Suppose there exists k such that for every q geq2, we have C, = C*.

Then HY,, = C* for ¢ > 2 and HY,,.

4 Generalized symmetry criterion for ODE

TODO def total derivative
TODO def jet space, M (™, prolongation of vector field pr("™)

Statement 4.1 Let M be an open subset of X xU and suppose F(x, u(")) =01s
an n-th order system of differential equations defined over M, with corresponding
subvariety S C M™ . Suppose G is a local group of transformations acting on
M whose prolongation leaves S invariant, meaning whenever (x,u(”)) €S we
have pr(™g - (z,u™) € S for all g € G such that this is defined. Then G is a
symmetry group of the system of differential equations.

Statement 4.2 Let M be an open subset of X xU and suppose F(z,u, . .. ,u(”)) =
0 is an n-th order system of differential equations defined over M with corre-
sponding subvariety S C M. Suppose G is a local group of transformations
acting on M whose prolongation leaves S invariant, meaning that whenever
(z,u,...,u™ € S, we have pr™yg - (z,u,...,u™) € S for all g € G such
that this is defined. Then G is a symmetry group of the system of differential
equations.

Now using 4.2 we can formulate the infinitesimal symmetry criterion for
ordinary differential equations.

Statement 4.3 (Infinitesimal invariance criterion for ODE) Suppose
FFau,...,u™) =0
fork=1,... d is a system of differential equations of mazximal rank defined
over M C X x U. If G is a local group of transformations acting on M and
pr(”)ka(x, Uy ... ,u(”)) =0,

where k =1,...,d whenever

F(x7u,...,u(")) =0,

for every infinitesimal generator v of G, then G is a symmetry group of the
system.



Theorem 4.1 (Generalized infinitesimal invariance criterion for ODE)
Suppose

Fk(x,u,...,u(”)) =0

fork=1,... d is a system of differential equations of mazximal rank defined
over M C X x U. If G is a local group of transformations acting on M and

proFR (2w, . u™) =0,

where k =1,...,d and v = Alt(v1,...,vq) whenever

F(x,u,...7u(”)) =0,

for every q — tuple of infinitesimal generators vy,...,vq of G, then G is a
q-symmetry group of the system.

Statement 4.4 Let F be a system of differential equations of mazximal rank
defined over M C X x U. The set of all infinitesimal symmetries of this system
forms a Lie algebra of vector fields on M. Moreover, if this is finite-dimensional,
the (connected component of the) symmetry group of the system is a local Lie
group of transformations acting on M.

Definition 4.1 (Characteristic of vector field) The characteristic of the vec-
tor field v is a q-tuple of functions Q(z,u,u’), depending on x,u and first order
derivatives of u, is defined by

P
[ (e A ou”
Q%(z, u,uz) = 0%(w,u) — E a (%U)%Um,

i=0
fora=1,...,q.

Statement 4.5 Let v = Y 0_, a'(z,u)d,, + 23:1 b (z,u)0,; and let Q be its
characteristic. The n-th prolongation of v is given as

P t n
pry = Zai(x,u)axi + Z Z bé(z,u(o‘))aiaua, (25)
i=1 j=1|a|=0
with coefficients
bl = Do@’ + Y _a'ul . (26)
i=0

Our first example is the equation w' = 0, that is u, = 0. We compute
the first prolongation using the characteristic of vector field v = ad, + b0, and
using the infinitesimal symmetry criterion we obtain the equation b, = 0. So the
symmetry algebra is given by a(x,u)d, + b(u)9d,. We move on to the equation
of 2-symmetry given as



a® (0% +b%) — b*(al + al) = a(z,u),

a" (b + bY) — b*(aZ + a) = b(u). @7

The solution are functions a*(x, u), a*(u), b* (x, u), b*(u) so we the 2-symmetry
group of v/ = 0 is isomorphic to the second power of the symmetry group
Cy =2 C2.

Our second example is the second order equation u” = 0. This yields by the
infinitesimal symmetry criterion the system of equations

bye = 0,
2bgy = Qgqy
(28)
byw = 2044,
W =0.
The Lie algebra of infinitesimal symmetries is isomorphic to sl(3) with gen-
erators

U1 = azv

Vg = 8u7

v3 = 10,,

Vg = Uy,

Vs = U0y,

Vg = X0y,

v7 = 220, + 2ud,,
vg = 2udy + u2d,.

Now the equation of 2-symmetry for each generator k = 1,...,8 as vy, =
Vi Oz + v 0, is as follows

@5+ b) — b (e + a) = of, a0
a"(by, + byy) — 0" (ay + ay) = vy
So in conclusion Cy = C3.
Investigating the n-th order equation u(™ = 0 we get from the infinitesimal
symmetry criterion the system of equations

bm" = 07
<Z> bxk—lun+l—k = Apkyn—Fk, (31)
Ayn — 0



for k=1,...(n—1). we can set

a(z,u) = aop(z) + a1 (z)u+ ... ap_q(x)u" 1,

1 (32>
b(x,u) =bo(z) + bi(x)x + ... bp_1(x)z" .

so we have 2n — 2 degrees of freedom and n — 4 equations. This gives a
symmetry algebra of dimension

5 Generalized symmetry criterion for PDE

First we restate the infinitesimal symmetry criterion for partial differential equa-
tions.

Theorem 5.1 (Generalized infinitesimal invariance criterion for PDE)
Suppose

FFey,.. . xqu,. .., u™)=0

fork=1,...,d is a locally solvable system of partial differential equations of
mazximal rank defined over M C X xU. If G is a local group of transformations
acting on M and

pr™MoFk(zy, . g, u™) =0,
where k =1,...,d and v = Alt(v1,...,v,) whenever

F(xl,...,xd7u7...7u(")) =0,

for every q — tuple of infinitesimal generators vy,...,vq of G, then G is a
q-symmetry group of the system.
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