
SCALA++ FORMAT FOR MICROTONAL MUSIC PRODUCTION,
ANALYSIS, AND RESEARCH

J.M. KARIMÄKI ET AL.

1. Introduction

The Scala++ format is meant to be a file format for musical tuning scales that
supersedes and extends the original Scala file format used by the Scala desktop
application1 for microtonal music, and other musical software, by adding new fea-
tures, making it possible to express tones in exact symbolic form, both as original
numerical values, or in the cent units, and compactly express microtonal tuning
systems of more general types than the original Scala format, which is basically
just {List of intervals, Period}.

Furthermore, the Scala++ format is designed to be backwards compatible with
the original Scala format, in the sense that any acceptable Scala file would also be
an acceptable Scala++ file.

In some rare situations a file would be interpreted differently as a Scala++ than
as a Scala file. This is necessary for ensuring a consistent interpretation of Scala++
files, without introducing cumbersome additional syntax requirements. The reason
for this inconvenience is the restricted nature of the original Scala format.

Date: 2021-03-11.
1http://huygens-fokker.org/scala/

1

2 J.M. KARIMÄKI ET AL.

2. Standard Scala Format

The full specifications of the original Scala file format can be found on the Scala
homepages2, but a short description is given here. The general structure of a typical
Scala file is as follows:

! optional comment lines that start by ‘!’ and usually
contain the name of the file as filename.scl

a line which is empty, or contains a short description of
the scale

! optional comment lines
an integer number n that indicates the number of notes in

the scale per period
! optional comment lines
n-1 lines, each starting by a note of the scale as

a rational number or cent value
a line that starts by the period of the scale as

a rational number or as a cent value
! optional comment lines

Scala files are normal text files. The notes of the scale are written as numerical
pitch values, either as rational numbers3, i.e. integers or rational numbers containing
one division symbol ‘/’ between two integers, or as cent values, written as decimal
numbers4, and required to have a decimal period ‘.’ somewhere, even at the end5.

Each comment line is required to start with the exclamation mark ‘ !’. Comments,
such as note names, mathematically exact definitions of the pitches, etc., can also
be added after the pitch values. Those comments do not require to start with the
exclamation mark.

Each scale in Scala is, by definition, assumed to contain the pitch 1/1, and this
value is normally omitted from the standard Scala files6.

2http://huygens-fokker.org/scala/scl_format.html
3Such as 2, 2/1, 3/2, 3, 3/1, 5, 5/3, 7/4, etc.
4Such as 100., 133.333, 316., 700., 701.955, 1200., etc.
5So, for example 700 cent would have to be written as 700. or 700.0 (but not as 700) in a

standard Scala file.
6In case a line contains the pitch 1/1, or 1, or 0. (as 0 cent), it is considered a multiplicity of

the pitch 1/1. Such pitch lines should not be used under normal circumances in standard Scala
files. They may produce unwanted errors when used by third-party musical software.

SCALA++ FORMAT FOR MICROTONAL MUSIC PRODUCTION, ANALYSIS, AND RESEARCH3

3. Examples of standard Scala files

Example 1. Olympos enharmonic scale

! olympos.scl
Scale of ancient Greek flutist Olympos, 6th century BC as reported by Partch
5

!
16/15
4/3
64/45
16/9
2/1

Example 2. Quarter-comma meantone scale

! meanquar.scl
1/4-comma meantone scale. Pietro Aaron’s temperament (1523)
12

!
76.04900
193.15686
310.26471
5/4
503.42157
579.47057
696.57843
25/16
889.73529
1006.84314
1082.89214
2/1

Example 3. Standard Western scale, 12edo

! 12edo.scl
12 equal divisions of the octave. The modern standard tuning scale of the West.
12

!
100.
200.
300.
400.
500.
600.
700.
800.
900.
1000.
1100.
1200.

4 J.M. KARIMÄKI ET AL.

4. Scala+ format

The Scala+ format is here defined to be the standard Scala format extended
by the notation m\n to indicate m degrees of n equal divisions of the octave, or
the pitch value 2m/n. This notational convention has become standard among
some segments of the microtonal community, and is, for example, used in Sevish’s
web app Scale Workshop7. It specifically uses the backlash symbol ‘\’, not to be
confused with the ordinary slash ‘/’ used for fractions and divisions.

Example 4. Equal Heptatonic scale, 7edo

! 7edo.scl
!
7 equal divisions of the octave. Used in traditional Georgian and Thai music.
7

!
1\7
2\7
3\7
4\7
5\7
6\7
7\7

Example 5. Blackwood[10] scale in 15edo

! blackwood10.scl
!
Blackwood[10] in 15edo.
10

!
2\15
3\15
5\15
6\15
8\15
9\15
11\15
12\15
14\15
15\15

7https://sevish.com/scaleworkshop/

SCALA++ FORMAT FOR MICROTONAL MUSIC PRODUCTION, ANALYSIS, AND RESEARCH5

5. Scala++ format

The Scala++ format is an extension of the Scala file standard, which is back-
wards compatible with both the original Scala and the above-described Scala+
standards. It has the additional features described in the following subsections.

5.1. Generalization of the backslash formulation for any period. Tthem\n
notation is extended to m\n; p to indicate m degrees of n equal divisions of the
interval p, or the pitch value pm/n. Furthermore, the following default values are
assumed when an explicit value has been omitted: m = 1, n = 12, and p = 2. The
default values m = 1 and n = 12 are also assumed for the shorter notation m\n.

5.2. Cent-valued pitches using the ‘c’ symbol. Any pitch, or interval, pre-
ceded or followed by the ‘c’ symbol is interpreted as cent-valued. Thus 1200c is
equal to 1200 cent and 3/2c is equal to 1.5c. For pitch values containing the decimal
point ‘.’ the use of ‘c’ at is optional. Alternatively, the ‘Cent’, ‘cent’, or ‘¢’ can also
be used.

5.3. Decimal-valued pitches using the ‘#’ symbol. Any pitch, or interval,
prefixed or postfixed by the ‘#’ symbol is interpreted as a real (or complex) number.
Thus #1.5 is equal to 3/2, and not to 1.5¢. For mathematical expressions and
rational, or integer-valued pitches, the use of ‘#’ is optional. Thus #2, #2/1, 2/1,
2, 2/1#, and 2# are all the same interval.

5.4. Frequencies as pitches using ‘Hz’. Any pitch value prefixed or postfiex by
‘Hz’ is to be interpreted as a frequency in Herz units, 1/s. Alternatively, ‘Herz’,
‘herz’, ‘ 1/s’, or ‘/s’ can also be used.

5.5. Mathematical expressions as pitch values. Pitch values can also be de-
fined using standard mathematical expressions and elementary functions. Mathe-
matical expressions between curly brackets {, } are interpreted as standard math-
ematical expressions, with + indicating ordinary addition of scalars, * indicating
ordinary multiplication of scalars, ^ or ** indicating ordinary exponentiation of
scalars, etc. Thus 6/5 ∗ 5/4 is equal to 3/2, and 6/5 + 5/4 is equal to 49/20. When
the operators + and *, etc. appear without curly brackets they are to be inter-
preted as addition and multiplication in the logarithmic pitch space, irrespective of
whether the pitches themselves are in the original pitch space or in a logarithmic
space, such as cents. Thus 2 ∗ 350c is equal to 700c, 200c + 300c is equal to 500c,
and 6/5 + 5/4 is equal to 3/2. But what if we want to divide in the logarithmic
space? One further specification must be added to avoid confusion. Now 700c/2
would naturally be equal to 350c. But what about 3/2/2? Would it be equal to
3/4, or sqrt(3/2)? The confusion is removed if we require a space before ‘/’, if we
mean division in the logarithmic space, and no space if we mean a fractional num-
ber. Thus 3/2 is equal to 1.5, but 3 /2 or 3 / 2 would be equal to sqrt(3). However
3/2, 3 /2, and 3 / 2 would all be equal to 3/2, since curly brackets imply ordinary
mathematical operations. Alternatively, we use the convention nrp, or nRp, for
n:th roots of p, with the square root, n = 2, as default, and also roots of 2, p = 2,
as default. Thus r3 = 2r3 for 3ˆ(1/2), and, according to all our conventions thus
far: r3 = 2r3 = 3 /2 = 3 / 2 = 3ˆ(1/2) = 3 ∗ ∗(1/2) = 1\2; 3 = \2; 3 = sqrt(3).

6 J.M. KARIMÄKI ET AL.

5.6. Predefined mathematical constants. The following mathematical con-
stants are defined: i, phi, ϕ, o, e, pi, π, tau, τ , -inf, −∞, +inf, +∞. As they
are complex scalars, they can have the pre/postfix ‘#’, but it is optional. Upper
and lower case letters are accepted. With nrp defined as above, and n = 2, p = 2,
as defaults, r effectively becomes the constant r = sqrt(2).

5.7. Exponential function. Now, since elementary functions are assumed, exp(x)
is the usual exponential function, but with the above conventions, 5 ∗ e = e ∗ ∗5 =
eˆ5 = e5 = exp(5). We can further simplify things by simply using e, or E, as
a prefix or postfix to a number signifies the exponential function, so E5 = e5 =
5e = 5E = exp(5). Now, the c pre/postfix can similarly be understood as a power,
namely x c = (21/1200)x = x\1200.

5.8. Logarithmic functions. This is ln(x), or log(x), but using l or L as a prefix or
postfix would be accepted. Thus l2 = L2 = 2L = 2l = log(2). A base-k logarithm
logk(x) or log(k, x) can be written using the shorthand klx, or kLx. Thus the base-
2 logarithm would be written 2Lx. The capital L is preferred to avoid confusing
the letter ‘l’ with the number ‘1’.

5.9. Chains of generators. In the standard Scala file the last pitch line indicates
the period of the scale. It is assumed that all scales have a period, and it is usually
equal to 2/1. Now, we could add extra periods after the last pitch line. Since
a period actually just means a generator whose exponents vary between -inf and
+inf, we can indicate periods alternatively as 2/1 -inf +inf, making the previous
statement explicit. Thus we can generalize this to format: generator firstExponent
lastExponent step. For example 3/2 -1 3 1 would indicate the chain (2/3, 1, 3/2,
9/4, 27/8). When those are folded into the octave, we get (1, 9/8, 4/3, 3/2, 27/16).
With the octave as period this is the scale chin_5.scl from the Scala scale archive:
Chinese pentatonic from Zhou period.

