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1 Introduction

The symmetry group of an equation is the group of transformations on the
ambient space preserving the solution set. The aim of this paper is to generalize
the notion of symmetry of an equation to higher symmetries and to provide basic
results about structure of these higher symmetries. In particular we construct a
cohomology based on symmetries and show that this cohomology is equivalent to
singular cohomology of the submanifold given by the solution set in the ambient
manifold. This procedure works generally for any type of equation. We also
derive consequences from homology axioms, providing a general framework that
generalizes the usual theorems for symmetries of partial and ordinary differential
equations.
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2 Symmetry of linear operator

First, we define the symmetry relation of a linear operator and compare it with
the usual notion of symmetries of an equation.

Let T,A,B linear operators on vector space V over field k;
We will denote (matrix) multiplication of A and B by omitting the operation

symbol as AB. In case this linear operator acts on a vector x, we will denote this
as (AB)x = ABx, usually omitting the braces as the operation order is obvious
from arity. In contrast, we shall denote group action by a linear operator A on
another linear operator B at a point (vector) x defined by A ∗ B(x) = B(Ax),
where Ax denotes matrix multiplication, in this case the same as plugging the
point x into the linear operator B.

Definition 2.1 (Symmetry of linear operator) Define symmetry of linear
operator T relation ∼ for linear operators A,B such that A ∼ B whenever

AT + TB = 0. (1)

Definition 2.2 (Equivalence of symmetries) Let T linear operator on vec-
tor space V . Let [A1, B1] and [A2, B2] symmetries of T . We say that the sym-
metries [A1, B1], [A2, B2] are equivalent [A1, B1] ∼ [A2, B2] when there exist
regular linear operators C1, C2 such that A2 = C1A1C

−1
1 and B2 = C2BC−1

2 .

For vector space V of dimension n we can set B to be dependent on T and
A since (1) has nullity at least n2. This way we can solve the equation for A,B
expressing B using A.

Statement 2.1 Equivalence of symmetries of linear operator T relation ∼ is
an equivalence relation.

Proof 2.1 Assume symmetry [A,B]. It is trivially equivalent to itself, estab-
lishing reflexivity. For another symmetry [A′, B′] equivalent to [A,B], we have
a regular transformation J . Its inverse T−1 gives the transformation for the
reversed relation, showing relation symmetry. Now for transitivity assume sym-
metry [A”, B”] equivalent to [A′, B′] with regular transformation K. Then the
composed transformation KJ shows similarity of [A,B] and [A”, B”].

For an element x in the solution set of T = 0 and a symmetry [A,B] of T
we have that

T (−Bx) = −(TB)x = A(Tx) = 0 (2)

and so −B preserves the solution set, being the usual point transformation
as expected. For now, we define the symmetry group of a linear operator using
the symmetry relation directly as in (2).

Definition 2.3 (Symmetry group) Let T linear operator on vector space V
with kernel X. The group G of all transformations B : V → V such that for
every x ∈ X we have Bx ∈ X.
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The easiest example of symmetry can be seen in a 2× 2 matrix. Lets start
with

T =

⌈
1 0
0 0

⌉
.

Solving the equation (1) for a symmetry relation [A,B] where B is expressed
using A, we acquire the following solutions:

A =

⌈
a11 a12
0 a22

⌉
, B =

⌈
a11 0
b21 b22

⌉
.

where a11, a12, a22, b21, b22 are parameters, the last four are free. We can see
that these transformations are related to translation by y, viewing the kernel of
T as {[0, y]|y ∈ R}.

As another example, we solve for symmetries of the linear operator

T =

⌈
0 1
1 0

⌉
.

The symmetry relation [A,B] is given by generators A11, A21, A12, A22 and
corresponding generators B11, B21, B12, B22:

A11 =

⌈
1 0
0 0

⌉
, A21 =

⌈
0 1
0 0

⌉
, A12 =

⌈
0 0
1 0

⌉
, A22 =

⌈
0 0
0 1

⌉

B11 =

⌈
0 −1
0 0

⌉
, B21 =

⌈
−1 0
0 0

⌉
, B12 =

⌈
0 0
0 −1

⌉
, B22 =

⌈
−1 0
0 0

⌉
.

Since in the second case the matrix T is regular, there are no free parameters.
Having defined the usual symmetry relation, we move on to define the higher

symmetries. We begin by defining the antisymmetrizer and insertion operator
in order to keep the notation concise.

Definition 2.4 (Antisymmetrizer) Let n ∈ N and A1, . . . , An linear opera-
tors on V . We define the antisymmetrizer of A1, . . . , An as

Alt(A1, . . . , An) =
1

n!

∑
ρ∈Sn

sign(ρ)Aρ(1) . . . Aρ(n), (3)

where Sn is the symmetric group of order n.

Statement 2.2 Let n ∈ N, ρ ∈ Sn, where Sn is the symmetric group of
order n and A1, . . . , An linear operators on V . Then (1) Alt(A1, . . . , An) =
Alt(ρ(A1), . . . , ρ(An)) and as a corollary, we see that (2) Alt(A1, . . . , An) = 0
when Ai = Aj for some i and j.

Proof 2.2 (1): Obvious from definition (3),
(2): From (A) we have Alt(A,B,B) = 1

3! (ABB−ABB−BAB+ABA+BBA−
BBA) = 0. Similar computation for n > 3.
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Definition 2.5 (Insertion operator) Let T,A1, . . . , An linear operators on
V and 1 ≤ k ≤ n. We define the insertion operator for T as ikT (A1, . . . , An) =
A1 . . . Ak−1TAk+1 . . . An. That is, the k-th term is replaced by T .

Now we can define the higher symmetries of a linear operator using the
antisymmetrizer and insertion operator.

Definition 2.6 (n-symmetry of linear operator) Let n ∈ N and linear op-
erators A1, . . . , An+1 on V . We say that [A1, . . . , An+1] is an n-symmetry of T
whenever the n-symmetry equation is satisfied

n∑
k=0

Altk(ikT (Aρ(1) . . . Aρ(n+1))) = 0, (4)

where Altk denotes the antisymmetrizer Alt acting on indices 1, . . . , k − 1, k +
1, . . . , n+ 1 and fixing the k-th term.

The definition agrees with the usual definition of symmetry of linear operator
2.1 as above for n = 1. We shall denote left hand side of the equation (4) as
Symn

A1,...An
(T ) and the space of n-symmetries of T as Symn(T ). We shall also

denote Sym(T ) =
∞⋃

n=1
Symn(T ).

Definition 2.7 (Equivalence of symmetries) Let T linear operator on vec-
tor space V . For n ∈ N let [A1, . . . , An+1] and [B1, . . . , Bn+1] be n-symmetries
of T . We say that the n-symmetries [A1, . . . , An+1], [B1, . . . , Bn+1] are equiv-
alent [A1, . . . , An+1] ∼ [B1, . . . , Bn+1] when there exist regular linear operators
[C1, . . . , Cn+1] such that Bk = CkAkCk

−1 for k = 1, . . . , n+ 1.

Statement 2.3 For every n ∈ N, n-symmetry of linear operator T relations ∼
are equivalence relations.

Proof 2.3 Similar to 2.1.

Generally for vector space V of dimension n, for a k-symmetry [A1, . . . , Ak+1,
the equation (4) has nullity at least n2 out of (k+1)n2. So solving the equation,
we can always express Ak+1 using A1, . . . , Ak.

Statement 2.4 (Symmetries form a vector space) Let T linear operator.
For every n ∈ N, Symn(T ), the n-symmetries of T form a vector space.

Proof 2.4 Let [A,B] and [A′, B′] symmetries. Then we have (A + A′)T =
TB + TB′ = T (B + B′). For α ∈ R we get αAT = αBT . The unit [1, 1] is
trivially a symmetry and so is the zero element [0, 0].

Again, let n ∈ N, x an element in the solution set of T = 0 and a n-symmetry
[A1, . . . , An+1] of T .
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Symn
A1,...,An+1

(T )x−Alt(A1, . . . , An)Tx = Alt(A1, . . . , An)T = 0 (5)

giving the point transformation. For example for n = 2 and 2-symmetry
[A,B,C] the n-symmetry equation becomes

TBC − TCB +ATC − CTA+ABT −BAT = 0 (6)

and so for a solution x of the equation Tx = 0 we have the point transfor-
mation symmetry given by

(TCB − TBC +ATC − CTA)x = [A,B]x = (ABT −BAT )x = 0, (7)

where [A,B] is the commutator of A and B. Generally, for n ∈ N the symme-
try point transformation is given by Symn

A1,...,An+1
(T ))x−Alt(A1, . . . , An)Tx.

As a first example of higher symmetry, we will find 2-symmetries of the linear
operator

T =

⌈
1 0
0 0

⌉
.

Solving for the symmetry relation [A,B,C], we obtain the following results:
We have triples of generatorsA11, A21, A12, A22, B11, B21, B12, B22, C11, C21, C12, C22.
HereA11, A21, A12, A22, B11, B21, B12, B22 are the usual matrix basis and C11, C21, C12, C22

are given by

C11 =

⌈
x y
z u

⌉
, C21 =

⌈
x y
z u

⌉
, C12 =

⌈
x y
z u

⌉
, C22 =

⌈
x y
z u

⌉
.

TODO DEBT RESULTS
Second we find 2-symmetries for the linear operator

T =

⌈
0 1
1 0

⌉
.

We obtain the following symmetry relation [A,B,C]: We use the same setup
for A11, A21, A12, A22, B11, B21, B12, B22 as in the previous example. Addition-
ally, C11, C21, C12, C22 are given by

C11 =

⌈
x y
z u

⌉
, C21 =

⌈
x y
z u

⌉
, C12 =

⌈
x y
z u

⌉
, C22 =

⌈
x y
z u

⌉
.

TODO DEBT RESULTS
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3 Construction of symmetry cohomology

We begin the construction of the symmetry cohomology by identifying Symn(T )
with a subspace in ∧n(V ).

Definition 3.1 (Identification with symmetric tensor algebra) Let n ∈
N and [A1, . . . , An+1] ∈ Symn(T ). We define the embedding into ∧n(V ), the
exterior algebra of degree n over V as Fn(A1, . . . , An+1) = Alt(A1, . . . , An),
omitting the n+1-th term, where Alt(A1, . . . , An) denotes here the tensor anti-
symmetrization Alt(A1, . . . , An) =

1
n!

∑
ρ∈Sn

sign(ρ)Aρ(1) ⊗ · · · ⊗ Aρ(n) and Sn

is the symmetric group on n elements.

The wedge product on Symn+k(T ) induced from ∧n+k(V ) for elements x =
(A1, . . . , An) and (An+1, . . . , An+k) is given by

x∧y =
1

(n+ k)!

∑
ρ∈S(n+k)

sign(ρ)Aρ(1)⊗· · ·⊗Aρ(n)⊗Aρ(n+1)⊗· · ·⊗Aρ(n+k) (8)

,
where Sn+k is the symmetric group on n+ k elements.
Suppose we have an n-symmetry given by x = [A1, . . . , An, B1] and a k-

symmetry y = [An+1, . . . , An+k, B2]. The resulting (n+ k)-symmetry obtained
by x ∧ y is a relation [A1, . . . , An+k, B] with B defined such that (4) holds.

The space Symn(T ) can be easily seen to be n-linear.
Next we define a boundary operator on Symn(T ), making it into a dg-

algebra.

Definition 3.2 (Differential) Let T linear operator on vector space V . Then
for n ∈ N we can define the mapping dn : Symn(T ) → Symn+1(T ) with
dn(Alt(A1, . . . , An)) = Alt(A1, . . . , An, 1), where (A1, . . . , An) ∈ Symn(T ) and
1 is the identity on V .

Theorem 3.1 (Symn(T ) forms a dg-algebra) (1) The mapping d from 3.2
is a differential on Symn(T ). In particular, it satisfies (2) d2 = 0 and (3)
d(A⊗B) = dA⊗B + (−1)degAA⊗ dB.

Proof 3.1 (1) Let us check that for an n-symmetry [A1, . . . , An], d
n([A1, . . . , An])

is an (n + 1)-symmetry. In particular dn([A1, . . . , An]) = [A1, . . . , An, 1]. We
need to find the transformation An+2 that completes the full (n + 1)-symmetry
relation [A1, . . . , An, 1, An+2] that satisfies the symmetry equation (4). To this
end, we group the terms in equation (4) for n+ 1 to three groups. First, terms
that contain An+1 = 1 and An+2. Second, terms that do not contain An+1 but
contain An+2. And the last third group, terms that do not contain An+2. This
group is equivalent to Alt(A1, . . . , An)T . The first and third group terms each
cancel out TODO DEBT USE INDUCTION PRESUMPTION (*), leaving only
the second group which equal to antisymmetrizer of A1, . . . , An, T, An+2 which
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fixes the n + 1-th component, T . The equation given by setting this antisym-
metrizer to zero yields An+2, since we can express An+2 using A1, . . . , An.
(2) Let A ∈ V . We compute d(d(A)) = d(Alt(A, 1)) = d(A, 1, 1). By 2.2 (2) we
have d(A, 1, 1) = 0.
(3) We have d(A ⊗ B) = A ⊗ B ⊗ 1 − 1 ⊗ A ⊗ B. From the other side
d(A) ⊗ B + A ⊗ d(B) = A ⊗ 1 ⊗ B − 1 ⊗ A ⊗ B + A ⊗ B ⊗ 1 − A ⊗ 1 ⊗ B =
A⊗B ⊗ 1− 1⊗A⊗B, which proves the statement.

In particular for n = 1 and a 1-symmetry [A,B] we have d(A) = d1(A) =
1
2 (A⊗ 1− 1⊗A).

The full 2-symmetry relation in this case is [A, 1, C] where C is given by the
equation ATC = CTA.

Now we may define the symmetry cohomology on Sym(T ) as usual.

Definition 3.3 (Symmetry cohomology) Let T linear operator on vector
space V . Then for k ≥ 0 the k-th symmetry cohomology group of T is defined
as Hk

Sym(T ) = ker(dk)/im(dk−1), for d the differential defined in 3.2.

4 A∞ algebra structure on n-symmetries

First we define the notion of A∞ algebra in order to show that the algebra of
symmetries carries this structure.

Definition 4.1 (A-infinity algebra) An A∞ algebra is given by the triple [A,

d, mn], where A is a graded vector space A =
∞⋃
n
An together with boundary

operator d : An → An+1 of degree 1 satisfying d2 = 0, the pair [A, d] forms a
dg-algebra and for every n = 1, 2, . . . we have a mapping mn : An → A of degree
(2− n) that satisfies the Sheffield equation

n∑
u=0

(−1)r+stmu(1
⊗r ⊗ · · · ⊗ms ⊗ 1⊗t) = 0; (9)

where n = r + s+ t and u = r + 1 + t.

We will go over some examples of (9). For n = 1 the equation just shows
m1 is the differential d:

m1m1 = 0. (10)

For n = 2 the equation shows that m2 is a graded derivation with respect
to m1:

m1m2 = m2(m1 ⊗ 1 + 1⊗m1). (11)

At n = 3 we have:

m2(1⊗m2−m2⊗1) = m1m3+m3(m1⊗1⊗1+1⊗m1⊗1+1⊗1⊗m1). (12)

Now we will show that the symmetries as defined in 3.1 form an A∞ algebra.
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Theorem 4.1 Let k field, V vector space over k and T : V → V linear operator.
Then symmetries A of T defined as in 3.1 form an A∞ algebra together with
the differential d from 3.2 as the boundary operator.

Proof 4.1 We already have that A is a dg-algebra by 3.1. It suffices to define
the mn operations.

We proceed by defining mn(A1⊗· · ·⊗An) = Alt(A1, . . . , An) and check that
these operations satisfy the Sheffield equation (9).

Let us sort the terms in the Sheffield equation into groups. First, terms of
the form m1mn. This term is equal to 1

2n! (d(Alt(A1, . . . , An)). This term comes
first in the equation.

Second, terms of the form mn(m1 ⊗ 1⊗ · · · ⊗ 1 + · · ·+ 1⊗ . . . 1⊗m1). The
second term equals 1

2n!d(Alt(A1, . . . , An)). This terms comes last in the Sheffield
equation.

Third, the middle terms. The rest of the terms that do not contain m1 are
of the form ma(mb ⊗ 1⊗ · · · ⊗ 1+ · · ·+1⊗ . . . 1⊗mb) for a+ b = n. This term
is equal to n

a!(b+1)!Alt(A1, . . . , An) when a ̸= b, otherwise zero. These terms are

antisymmetric with respect to n.
Summing all the terms we see that the first and second terms cancel out as

well as the middle terms so the Sheffield equation holds.

Having established that symmetries form an A∞ algebra, We make use of
Kadeischvili Theorem as in [4] in order to induce the A∞ algebra structure on
Hk

Sym(T ).

Definition 4.2 (Quasi-isomorphism) We say that two A∞ algebras are quasi-
isomorphic, whenever their cohomology rings are isomorphic.

Definition 4.3 (A∞ algebra morphism) A morphism of A∞ algebras f :
A → B is a family fn : A⊗n → B of graded maps of degree 1− n such that

∑
(−1)r+stfu(1

⊗r ⊗ms ⊗ a⊗t) =
∑

(−1)smr(fi1 ⊗ fi2 ⊗ · · · ⊗ fir ), (13)

where n ≥ 0, n = r + s+ t, u = r + 1 + t and the second sum runs over all
1 ≤ r ≤ n and all decompositions n = i1 + i2 + · · · + ir. The sign on the right
hand side of the equation is given by

s = (r − 1)(i1 − 1) + (r − 2)(i2 − 1) + · · ·+ 2(ir−2 − 1) + (ir−1 − 1).

Moreover f is a quasi-isomorphism if f1 is a quasi-isomorphism.

Theorem 4.2 (Kadeishvili Theorem) Let A an A∞ algebra and let H∗(A)
the cohomology of A. There is an A∞ algebra structure on H∗(A) with m1 = 0
and m2 induced by multiplication, constructed from the A∞-structure of A, such
that there is a quasi-isomorphism of A∞ algebras H∗(A) → A, lifting the identity
of H∗(A). This A∞-algebra structure is unique up to quasi-isomorphism.
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5 Calculation of higher symmetry groups - Al-
gebraic equations

Here the simplified notation au means first order partial derivative of a with
respect to u.

TODO MOVE TO THE FRONT

Theorem 5.1 (Characterization of q-symmetry group) Let T linear op-
erator on vector space V and let C the symmetry group of T . Then the q-
symmetry group Cq is isomorphic to a power k of the symmetry group

Cq
∼= Ck,

for some 0 ≤ k ≤ q. Moreover for finite-dimensional operators the maximal
value k = q is attained if and only if T is regular. In this case Hq

Sym
∼= Z for

every q ≥ 0.

TODO def invariant function
TODO def infinitesimal generator, symmetry algebra

Statement 5.1 Let G be a connected group of transformations acting on the
manifold M . A smooth real-valued function f : M → R is an invariant function
for G if and only if

v(f) = 0,

for all x ∈ M and every infinitesimal generator v of G.

Statement 5.2 Let M be an open subset of X×U and suppose F (x, u(n)) = 0 is
an n-th order system of differential equations defined over M , with corresponding
subvariety S ⊂ M (n). Suppose G is a local group of transformations acting on
M whose prolongation leaves S invariant, meaning whenever (x, u(n)) ∈ S we
have pr(n)g · (x, u(n)) ∈ S for all g ∈ G such that this is defined. Then G is a
symmetry group of the system of differential equations.

Statement 5.3 (Infinitesimal invariance criterion for algebraic equations)
Suppose

F k(x) = 0

for k = 1, . . . , d is a system of algebraic equations of maximal rank defined
over M . If G is a connected local Lie group of transformations acting on M
then G is a symmetry group of the system if and only if

vF k(x) = 0,

where k = 1, . . . , d whenever

F (x) = 0,

for every infinitesimal generator v of G,
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Theorem 5.2 (Generalized infinitesimal invariance criterion for algebraic equations)
Let G be a connected Lie group of transformations acting on the n-dimensional
manifold M . Let F : M → Rd, d ≤ n define a system of algebraic equations

F k(x) = 0

for k = 1, . . . , d and assume the system is of maximal rank, meaning the

Jacobian matrix (∂F
k

∂xi
) is of rank d at every solution x of the system. Then G

is a q-symmetry group of the system if and only if

vF k(x) = 0,

where k = 1, . . . , d and v = Alt(v1, . . . , vq) whenever

F (x) = 0,

for every q − tuple of infinitesimal generators v1, . . . , vq of G, then G is a
q-symmetry group of the system.

As a special case for q = 2, we have generators v1, v2. The total vector field
is the commutator v = v1v2 − v2v1. For q > 2 the total tensor Alt(v1, . . . , vq)
is not a vector field in general. We shall denote this generalized commutator of
vector fields as [v1, . . . , vq].

Statement 5.4 Let v1, . . . , vq vector fields. Then we have the recursive formula
for generalized commutator

[v1, . . . , vq] =

q∑
k=0

(−1)1+k[v1, . . . , vk−1, vk+1, . . . , vq]vk (14)

For example for q = 3 we have

[A,B,C] = [A,B]C − [A,C]B + [B,C]A. (15)

From the recursive formula we can see that [v1, . . . , vq] is a differential opera-
tor with components ∂k

xi
for i = 1, . . . , n and k = 1, . . . , (q−1). For example for

q = 3 and variables x, y, the generalized commutator [v1, v2, v3] has components
∂x, ∂y, ∂

2
x, ∂

2
y .

First we will investigate the sphere. The equation is given by F (x, y) =
x2 + y2 − 1. For the vector field

v = a∂x + b∂y, (16)

we compute by the infinitesimal symmetry criterion

vF (x, y) = 2xa+ 2yb = 0. (17)

The solution is the generator a = y, b = −x. Integrating this vector field
gives the symmetry group SO(2). Next for 2-symmetry, we set the vector fields
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v1 = ax∂x + ay∂y

v2 = bx∂x + by∂y
(18)

and solve for ax, ay, bx, by the equation v = [v1, v2]. This gives the system of
partial differential equations

ax(bxx + byx)− bx(axx + ayx) = y,

ay(bxy + byy)− by(axy + ayy) = −x.
(19)

We can set

ax(x, y) = c1 + c2x+ c3y + c4xy,

ay(x, y) = c5 + c6x+ c7y + c8xy,

bx(x, y) = c9 + c10x+ c11y + c12xy,

by(x, y) = c13 + c14x+ c15y + c16xy.

(20)

so we have

bxx + byx = c10 + c13 + (c14 + c16)y (21)

and

ax(bxx + byx) = c1(c10 + c13) + (c1(c14 + c16) + c3(c10 + c13))y

+c2(c10 + c13)x+ (c2(c14 + c16) + c4(c10 + c13))xy

+c3(c14 + c16)y
2 + c4(c14 + c16)xy

2.

(22)

This gives the first part of the system of equations

c1(c10 + c13) + (c1(c14 + c16)− c5(c2 + c5) + (c5(c6 + c8) = 0,

c2(c10 + c13)− c10(c2 + c5) = 0,

c1(c14 + c16) + c3(c10 + c13)− c9(c6 + c8) + c11(c2 + c5) = 1,

c2(c14 + c16) + c4(c10 + c13)− c10(c6 + c8) + c12(c2 + c5),= 0

c3(c14 + c16)− c11(c6 + c8) = 0,

c4(c14 + c16)− c12(c6 + c8) = 0.

(23)

The second part of the system is

c5(c14 + c1) + (c5(c2 + c4)− c9(c6 + c11) + (c9(c10 + c12) = 0,

c4(c14 + c1)− c14(c6 + c9) = 0,

c4(c2 + c4) + c7(c14 + c1)− c13(c10 + c12) + c15(c5 + c9) = −1,

c6(c2 + c4) + c8(c14 + c1)− c14(c10 + c12) + c16(c6 + c11),= 0

c7(c2 + c4)− c15(c10 + c12) = 0,

c8(c2 + c4)− c16(c10 + c12) = 0.

(24)

11



Since there are remaining 4 degrees of freedom, we see that the 2-symmetry
group is isomorphic to the fourth power of the symmetry group C2

∼= C4.
For the hyperbola F (x, y) = x2− y2+1 the generator is a = y, b = x, giving

the group of hyperbolic rotations. The equation for 2-symmetry is in this case
complementary to the sphere

ax(bxx + byx)− bx(axx + ayx) = y,

bx(bxy + byy)− by(axy + ayy) = x.
(25)

The system of equations is similar to (23) and (24) with 1 in the place of
the only −1. Again we conclude that C2

∼= C4.
Our last example is the parabola given as F (x, y) = αx2 − y. We set the

vector field v as above and compute

vF = 2αxa− b = 0

so the solution generator is a = 1, b = 2αx. Integrating this field gives the group
of quadratic transformations. For the 2-symmetry equation we have

ax(bxx + byx)− bx(axx + ayx) = 1,

ay(bxy + byy)− by(axy + ayy) = 2αx.
(26)

We can set

ax(x, y) = c1 + c2x+ c4xy,

ay(x, y) = c5 + c6x+ c8xy,

bx(x, y) = c9 + c10x+ c12xy,

by(x, y) = c13 + c14x+ c16xy.

(27)

This yields the system given by

c1(c10 + c13) + (c1(c14 + c16)− c5(c2 + c5) + (c5(c6 + c8) = 1,

c2(c10 + c13)− c10(c2 + c5) = 0,

c1(c14 + c16)− c9(c6 + c8)+ = 0,

c2(c14 + c16) + c4(c10 + c13)− c10(c6 + c8) + c12(c2 + c5),= 0

c4(c14 + c16)− c12(c6 + c8) = 0,

(28)

and

c5(c14 + c1) + (c5(c2 + c4)− c9(c6) + (c9(c10 + c12) = 0,

c4(c14 + c1)− c14(c6 + c9) = 2α,

c4(c2 + c4)− c13(c10 + c12) = 0,

c6(c2 + c4) + c8(c14 + c1)− c14(c10 + c12) + c16c6,= 0

c8(c2 + c4)− c16(c10 + c12) = 0.

(29)
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We can conclude that the 2-symmetry group is isomorphic to the second
power of the symmetry group C2

∼= C2.
In general the equation for 2-symmetry is a system of first order partial

differential equations given for k = 1, . . . , n as

n∑
i=1

ak(bik)− bk(aik) = αk. (30)

Moving on to 3-symmetry, we set the tensor

Uk
ab = ak(bxk + byk)− bk(axk + ayk) (31)

and define the tensors of degree 3 as

Uk,0
abc = Uk

abc
k − Uk

acb
k + Uk

bca
k, (32)

and

Uk,1
abc =

n∑
l=0

Uk
abc

k
l − Uk

acb
k
l + Uk

bca
k
l , (33)

which gives the equations for 3-symmetry
In the general case we set inductively the tensors

Uk,l
a1...an+1 =

n+1∑
i=1

l∑
|α|=0

(−1)1+iUk
a1...ai−1ai+1...an+1aiα, (34)

that gives the system of partial differential equations of (q− 1)-the order for
q-symmetry defined for k = 1, . . . n and l = 0, . . . (q − 1)

Uk,l
a1...an =

n∑
i=1

l∑
|α|=0

(−1)1+iUk
a1...ai−1ai+1...anaiα. (35)

TODO Magical power k Conjecture

0 → C → Ck → Ck → . . . (36)

DRAFT
The general 2-symmetry equation for algebraic equations:

axbxx + aybxy − bxaxx − byaxy = a(x, y),

axbyx + aybyy − bxayx − byayy = b(x, y).
(37)
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6 Calculation of higher symmetry groups - ODE

TODO def total derivative
TODO def jet space, M (n), prolongation of vector field pr(n)

Statement 6.1 Let M be an open subset of X×U and suppose F (x, u, . . . , u(n)) =
0 is an n-th order system of differential equations defined over M with corre-
sponding subvariety S ⊂ M (n). Suppose G is a local group of transformations
acting on M whose prolongation leaves S invariant, meaning that whenever
(x, u, . . . , u(n) ∈ S, we have pr(n)g · (x, u, . . . , u(n)) ∈ S for all g ∈ G such
that this is defined. Then G is a symmetry group of the system of differential
equations.

Now using 6.1 we can formulate the infinitesimal symmetry criterion for
ordinary differential equations.

Statement 6.2 (Infinitesimal invariance criterion for ODE) Suppose

F k(x, u, . . . , u(n)) = 0

for k = 1, . . . , d is a system of differential equations of maximal rank defined
over M ⊂ X × U . If G is a local group of transformations acting on M and

pr(n)vF k(x, u, . . . , u(n)) = 0,

where k = 1, . . . , d whenever

F (x, u, . . . , u(n)) = 0,

for every infinitesimal generator v of G, then G is a symmetry group of the
system.

Theorem 6.1 (Generalized infinitesimal invariance criterion for ODE)
Suppose

F k(x, u, . . . , u(n)) = 0

for k = 1, . . . , d is a system of differential equations of maximal rank defined
over M ⊂ X × U . If G is a local group of transformations acting on M and

pr(n)vF k(x, u, . . . , u(n)) = 0,

where k = 1, . . . , d and v = Alt(v1, . . . , vq) whenever

F (x, u, . . . , u(n)) = 0,

for every q − tuple of infinitesimal generators v1, . . . , vq of G, then G is a
q-symmetry group of the system.
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Statement 6.3 Let F be a system of differential equations of maximal rank
defined over M ⊂ X ×U . The set of all infinitesimal symmetries of this system
forms a Lie algebra of vector fields on M . Moreover, if this is finite-dimensional,
the (connected component of the) symmetry group of the system is a local Lie
group of transformations acting on M .

Definition 6.1 (Characteristic of vector field) The characteristic of the vec-
tor field v is a q-tuple of functions Q(x, u, u′), depending on x, u and first order
derivatives of u, is defined by

Qα(x, u, ux) = bα(x, u)−
p∑

i=0

ai(x, u)
∂uα

∂xi
ux,

for α = 1, . . . , q.

Statement 6.4 Let v =
∑p

i=1 a
i(x, u)∂xi +

∑t
j=1 b

j(x, u)∂uj and let Q be its
characteristic. The n-th prolongation of v is given as

pr(n)v =

p∑
i=1

ai(x, u)∂xi
+

t∑
j=1

n∑
|α|=0

bjα(x, u
(α))∂j

uα
uα, (38)

with coefficients

bjα = DαQ
j +

p∑
i=0

aiuj
α,i. (39)

Our first example is the equation u′ = 0, that is ux = 0. We compute
the first prolongation using the characteristic of vector field v = a∂x + b∂u and
using the infinitesimal symmetry criterion we obtain the equation bx = 0. So the
symmetry algebra is given by a(x, u)∂x + b(u)∂u. We move on to the equation
of 2-symmetry given as

ax(bxx + bux)− bx(axx + aux) = a(x, u),

au(bxu + buu)− bu(axu + auu) = b(u).
(40)

The solution are functions ax(x, u), au(u), bx(x, u), bu(u) so we the 2-symmetry
group of u′ = 0 is isomorphic to the second power of the symmetry group
C2

∼= C2.
Our second example is the second order equation u′′ = 0. This yields by the

infinitesimal symmetry criterion the system of equations

bxx = 0,

2bxu = axx,

buu = 2axu,

auu = 0.

(41)
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The Lie algebra of infinitesimal symmetries is isomorphic to sl(3) with gen-
erators

v1 = ∂x,

v2 = ∂u,

v3 = x∂x,

v4 = u∂u,

v5 = u∂x,

v6 = x∂u,

v7 = x2∂x + xu∂u,

v8 = xu∂x + u2∂u.

(42)

Now the equation of 2-symmetry for each generator k = 1, . . . , 8 as vk =
vxk∂x + vuk∂u is as follows

ax(bxx + bux)− bx(axx + aux) = vxk ,

au(bxu + buu)− bu(axu + auu) = vyk .
(43)

So in conclusion C2
∼= C3.

Investigating the n-th order equation u(n) = 0 we get from the infinitesimal
symmetry criterion the system of equations

bxn = 0,(
n

k

)
bxk−1un+1−k = axkun−k ,

aun = 0.

(44)

for k = 1, . . . (n− 1). we can set

a(x, u) = a0(x) + a1(x)u+ . . . an−1(x)u
n−1,

b(x, u) = b0(x) + b1(x)x+ . . . bn−1(x)x
n−1.

(45)

so we have 2n − 2 degrees of freedom and n − 4 equations. This gives a
symmetry algebra of dimension

7 Calculation of higher symmetry groups - PDE

First we restate the infinitesimal symmetry criterion for partial differential equa-
tions.
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Theorem 7.1 (Generalized infinitesimal invariance criterion for PDE)
Suppose

F k(x1, . . . , xd, u, . . . , u
(n)) = 0

for k = 1, . . . , d is a locally solvable system of partial differential equations of
maximal rank defined over M ⊂ X×U . If G is a local group of transformations
acting on M and

pr(n)vF k(x1, . . . , xd, u, . . . , u
(n)) = 0,

where k = 1, . . . , d and v = Alt(v1, . . . , vq) whenever

F (x1, . . . , xd, u, . . . , u
(n)) = 0,

for every q − tuple of infinitesimal generators v1, . . . , vq of G, then G is a
q-symmetry group of the system.

8 Consequences of homology axioms

Definition 8.1 (Equation) TODO equation ambient space topological space /
manifold continuous mapping / C-whatever solution set

The solution set of an equation is always a topological subspace of the am-
bient space, since it is the continuous preimage of a one point set. In the case
when the ambient space is a manifold, the solution set becomes a submanifold.

Definition 8.2 (Equivalent equations) We say that two equations ϵ1, ϵ2 are
equivalent, whenever using a solution of ϵ1 we can deduce a solution for ϵ2.

Statement 8.1 Relation of equivalence for equations is an equivalence relation.

Definition 8.3 (Local transformation group) TODO

Definition 8.4 (Symmetry group of system of equations) TODO

Having established symmetry cohomology on symmetries of a linear opera-
tor T on a vector space V , we now derive general theorems on symmetries of
equations from the axioms of homology.

Statement 8.2 (Eilenberg-Steenrod cohomology axioms) Let Hn sequence
of functors for n ∈ N from the category of pairs of topological spaces (X,A)
to the category of graded commutative rings, together with the boundary map
δ : Hi(X,A) → Hi+1(A) which is a natural transformation. Then the following
holds:
(1) Homotopy: Homotopic maps induce the same map in homology. That is, if
g, h : (X,A) → (Y,B) are homotopic, then their induced homomorphisms are
the same.
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(2) Excision: If (X,A) is a topological pair and U is a subset of A such that
the closure of U is contained in the interior of A, then the inclusion map
i : (X \ U,A \ U) → (X,A) induces an isomorphism in homology.
(3) Dimension: Let P be the one-point space, then Hn(P ) = 0 for n ̸= 0.
(4) Additivity: If X =

⋃
α
Xα, the disjoint union of a family of topological spaces

Xα, then Hn(X) ∼=
⊕
α
Hn(Xα)

(5) Exactness: Each pair (X,A) induces a long exact sequence in homology, via
the inclusions i : A → X and j : X → (X,A):

· · · → Hn(X,A) →j∗ Hn(X) →i∗ Hn(A) →δ Hn+1(X,A) → . . . (46)

If P is the one-point space, then H0(P ) is called the coefficient group.

TODO homology axioms list enumerate, rightarrow indices

Statement 8.3 Let ϵ1, ϵ2 equivalent equations. Then for every k ≥ 0, we have
Hk

Sym(ϵ1)
∼= Hk

Sym(ϵ2).

Proof 8.1 Consequence of 8.2 (1).

Statement 8.4 (Substitution Theorem) Any two equations related by a change
of coordinates have isomorphic symmetry cohomology groups.

Proof 8.2 Equations related by a change of coordinates are obviously equiva-
lent.

As an example we can see second-order linear partial differential equations.
Lets say we have an equation ϵ of elliptic class, given by the quadratic form

T =

⌈
a b
b c

⌉
.

We can substitute variables, transforming ϵ to an equivalent equation ϵ′ of
the same class, given by

T ′ =

⌈
A B
B C

⌉
.

We can conclude that second-order linear partial differential equations (and
generally equations given by a quadratic form) of the same class have isomorphic
symmetry homology.

Statement 8.5 (Dimension) Any equation ϵ on one point space P has Hn
Sym =

0 for n ̸= 0 and H0
Sym is the symmetry group of ϵ.

Proof 8.3 Consequence of 8.2 (3).
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Statement 8.6 (Additivity) Let ϵ equation defined on X =
⋃
α
Xα. Denote ϵα

the component of the equation ϵ defined on Xα. Then HSym(ϵ) ∼=
⊕
α
HSym(ϵα).

Proof 8.4 Consequence of 8.2 (4).

Statement 8.7 (Excision Theorem) Let ϵ equation defined on space X with
solution set S and subset U of S such that the closure of U is contained in the
interior of S. Then for k ≥ 0 we have Hk

Sym(X \ U, S \ U) ∼= Hk
Sym(X,S).

Proof 8.5 Consequence of 8.2 (2).

Statement 8.8 (Long exact sequence) Let ϵ equation defined on space X
with solution set S. Then we have the following long exact sequence:

· · · → Hn(X,S) → Hn(X) → Hn(S) → Hn+1(X,S) → . . . (47)

Proof 8.6 Consequence of 8.2 (5).

Statement 8.9 (Mayer-Vietoris sequence) Let X topological space with sub-
spaces A,B whose interiors cover X. Then we have the following long exact
sequence:

· · · → Hn
Sym(X) → Hn

Sym(A)⊕Hn
Sym(B) → Hn

Sym(A ∩B) → Hn+1
Sym (X) → . . .

(48)

Proof 8.7 Follows from 8.2 (2) and (5).

Statement 8.10 (Mayer-Vietoris sequence for equations) Let ϵ1, ϵ2 equa-
tions with solution sets A and B. Then we have the following long exact se-
quence:

· · · → Hn
Sym(A∪B) → Hn

Sym(A)⊕Hn
Sym(B) → Hn

Sym(A∩B) → Hn+1
Sym (A∪B) → . . .

(49)

Proof 8.8 Consequence of 8.9.

Definition 8.5 (Suspension) Let X topological space. Then the suspension
SX of X is defined as the quotient space X × [0, 1]/X × {0}, X × {1}.

Statement 8.11 (Suspension Theorem) Let X = SY suspension of a topo-
logical space Y . Then Hn(SY ) ∼= Hn−1(Y ).

Proof 8.9 Follows from 8.9.
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As an example, consider the family of equations ϵn : X2
1 + · · ·+X2

n = r2, for
r > 0. The solution set is the topological space Sn. We can apply suspension,
increasing the degree of the equation S(Sn) ∼= Sn+1. We can compute now using
the Suspension Theorem that Hk

Sym(Sn) ∼= Z for k = 0, n and Hk
Sym(Sn) ∼= {0}

otherwise.

Definition 8.6 (Solvable group) A group G is solvable if there is a chain of
subgroups 1 = G1 ≤ G2 ≤ · · · ≤ Gn = G such that for k = 1, 2, . . . , n − 1 we
have that Gk−1 is normal in Gk and Gk/Gk−1 is abelian.

We note that direct product of solvable groups is solvable. So every symme-
try cohomology group is solvable if and only if the symmetry group is solvable.

Definition 8.7 (Solvable symmetry group) TODO

Definition 8.8 (Orbit) TODO

Statement 8.12 (Reduction Theorem) Let ϵ n-th order equation that ad-
mits an r-parameter solvable group of symmetries G such that for 1 ≤ k ≤ r
the orbits of Gk have dimension k. Then ϵ is equivalent to a (n − r)-th order
equation.

TODO GENERALIZE TO HIGHER SYMMETRIES

Proof 8.10 TODO, hopefully using homology axioms

TODO Example of usage of homology theorems
TODO Examples of equations with trivial cohomology, similar to spheres

and such
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